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ESTIMATING EFFECTS OF LIMITING FACTORS WITH
REGRESSION QUANTILES
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Abstract. In a recent Concepts paper in Ecology, Thomson et al. emphasized that
assumptions of conventional correlation and regression analyses fundamentally conflict with
the ecological concept of limiting factors, and they called for new statistical procedures to
address this problem. The analytical issue is that unmeasured factors may be the active
limiting constraint and may induce a pattern of unequal variation in the biological response
variable through an interaction with the measured factors. Consequently, changes near the
maxima, rather than at the center of response distributions, are better estimates of the effects
expected when the observed factor is the active limiting constraint. Regression quantiles
provide estimates for linear models fit to any part of a response distribution, including near
the upper bounds, and require minimal assumptions about the form of the error distribution.
Regression quantiles extend the concept of one-sample quantiles to the linear model by
solving an optimization problem of minimizing an asymmetric function of absolute errors.
Rank-score tests for regression quantiles provide tests of hypotheses and confidence in-
tervals for parameters in linear models with heteroscedastic errors, conditions likely to
occur in models of limiting ecological relations. We used selected regression quantiles (e.g.,
5th, 10th, . . ., 95th) and confidence intervals to test hypotheses that parameters equal zero
for estimated changes in average annual acorn biomass due to forest canopy cover of oak
(Quercus spp.) and oak species diversity. Regression ‘quantiles also were used to estimate
changes in glacier lily (Erythronium grandifiorum) seedling numbers as a function of lily
flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data
that motivated the query by Thomson et al. for new statistical procedures. Both example
applications showed that effects of limiting factors estimated by changes in some upper
regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes
in the means from standard linear model procedures. Estimating a range of regression
quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns
for exploratory and inferential analyses in observational -studies of limiting factors, es-

pecially when sampling large spatial and temporal scales.

Key words:  absolute deviations; limiting factors; linear models; quantiles; rank-score tests; re-

gression, regression quantiles.

INTRODUCTION

The law of limiting factors (Liebig’s law of the min-
imum) is a basic tenet of ecological science. A limiting
factor is the one least available among those factors
that affect growth, survival, and reproduction of an
organism. Any requisite factor has the potential to limit
an organism, but only one will be the active constraint
at any given point in time and space (Kaiser et al.
1994). A recent “Concepts’ paper in Ecology (Thom-
son et al. 1996) provided a detailed synopsis of the
pervasive nature of limiting relationships in ecology
and a convincing argument that commonly used sta-
tistical methods such as correlation and regression are
not well suited for estimating or testing those relation-
ships. Thomson et al. (1996) believed that commonly
accepted terminology and statistical methods for esti-
mating functions along the edges of distributions would
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enhance the communication of results of descriptive
ecological studies where an observed variable acts as
a limiting factor and the interior of the distribution is
where other factors intervene.

Limiting relationships and the statistical difficulties
associated with estimating and testing them have been
discussed for a variety of ecological phenomena, in-
cluding stomatal conductance of tree leaves as a func-
tion of photon flux density or leaf water potential (Jar-
vis 1976), foregut volume as a function of carapace
length of lobsters (Maller et al. 1983, Maller 1990),
plant growth rates with age (Rabinowitz et al. 1985),
animal abundance and body size relationships in mac-
roecology (Brown and Maurer 1987, Blackburn et al.
1992, Griffiths 1992, Blackburn and Gaston 1998), an-
imal responses to habitat (Johnson et al. 1989, Terrell
et al. 1996), effects of competition on distribution and
abundance of focal species (Goldberg and Scheiner
1993), and algal growth as a function of nutrient avail-
ability (Kaiser et al. 1994). Thomson et al. (1996) used
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Fic. 1. A sample (n = 100) of biomass (y), habitat con-
ditions [X = uniform (0, 1)], and nonhabitat factors {Z =
0.05(0) + 0.95[uniform (0, 1)]} from a hypothetical inter-
ference interaction model of limiting factors where y = 0.25
+ 4X — 4XZ + e, e is uniform (—0.25, 0.25), and 5% of the
population has no interaction between habitat and nonhabitat
factors. The surface plotted in (A) is the least-squares estimate
of the mean function (b, = 0.27, 95% c1 = 0.22—-0.33; b, =
4.00, 95% c1 = 3.88—4.12: b, = —4.02, 95% cI = —4.19~
—3.86) when nonhabitat factors are modeled. The dashed line
in (B) is the OLS regression estimate for biomass adjusted
for nonhabitat factors (y + 4.02XZ) as a function of habitat.
The dashed line in (C) is the OLS estimate for biomass as a
function of habitat, and the solid line is the maximum re-
gression quantile.
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partitioned regression and logistic slicing as tentative
analysis techniques to examine limiting relations be-
tween glacier lily (Erythronium grandiflorum) seedling
numbers and flower numbers, but did not present any
statistical theory to justify use of these methods. They
discussed weaknesses of their methods and emphasized
the need for objective statistical methods to estimate
and test slopes along the “‘edges” of point clouds ex-
pected from limiting relationships. Maller (1990) and
Kaiser et al. (1994) used methods based on statistical
theories associated with estimating missing informa-
tion (expectation maximization [EM] algorithm) and
mixture distributions.

A major challenge of estimating the effects associ-
ated with a measured subset of limiting factors is to
account for the effects of unmeasured factors in an
ecologically realistic manner. Consider a biological re-
sponse variable (e.g., Y = species biomass) that
changes as a function of some limiting factors (e.g., X
= habitat conditions) that are measured, and as a func-
tion of other limiting factors (e.g., Z = nonhabitat fac-
tors such as weather and disease) that may not be mea-
sured. In this example (other variables could be inserted
to describe other ecological phenomena), change in
species biomass (¥) does not exceed limits imposed
by the habitat conditions (X), but can be reduced by
nonhabitat factors (Z). One simple representation of
this relation is a linear model in which species biomass
is a positive linear function of habitat factors and a
negative function of the interaction of habitat and non-
habitat factors, i.e., an interference interaction model
(Neter et al. 1996:311-312). We took a sample (n =
100) of observations from a hypothetical interference
interaction model where a small percentage (5%) of the
population is unaffected by the interaction, and we es-
timated the mean function with least squares regression
(Fig. 1A). Change in biomass, due to change in habitat
conditions, as the active limiting factor is easily esti-
mated because we can account for the nonhabitat fac-
tors with an estimate of the interaction effect; variation
about the estimated change in means is small and ho-
mogeneous (Fig. 1B). If, however, we do not measure
the nonhabitat factors, we cannot estimate the inter-
action. The resultant distribution of biomass has greater
variation that increases with levels of habitat that would
support more biomass if habitat were the active con-
straint (Fig. 1C). Unmeasured nonhabitat factors can
reduce biomass more where habitat would limit bio-
mass to higher levels. The linear relation between spe-
cies biomass and the measured habitat factors most
consistent with the relation expected if habitat is the
active limiting factor is near the upper “‘edge,” rather
than through the center of the data distribution (com-
pare Figs. 1B and C). Most commonly used regression
techniques (linear and nonlinear least squares regres-
sion, generalized linear models) estimate functions
through the center of data distributions (expected val-
ues). We demonstrate how regression quantiles can be
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used to model limiting relations and account for the
unmeasured ecological factors by estimating changes
near the upper extremes of data distributions.

Various points of a univariate one-sample distribu-
tion can be described by estimating different quantiles
of the cumulative distribution function. The tth one
sample quantile estimates have a proportion T of the
sample observations less than or equal to the estimate.
The median, or 0.50th quantile, describes the center of
the distribution such that 50% of the observations are
less and 50% greater than the estimate; a 0.90th quan-
tile is an estimate such that 90% of the observations
are less and 10% greater than the estimate. Regression
quantiles extend this concept of one-sample quantiles
to the linear model by expressing the quantile estimates
as solutions to an optimization problem of minimizing
an asymmetric function of absolute error loss (Koenker
and Bassett 1978, 1982, Buchinsky 1991, Koenker and
Portnoy 1996). The © = 0.50th regression quantile is
equivalent to least absolute deviation (LAD) regression
estimates of conditional medians in a linear model
(Koenker and Bassett 1978), an alternative to ordinary
least squares (OLS) estimates of conditional means for
modeling central tendency (Birkes and Dodge 1993,
Cade and Richards 1996).

Regression quantiles for linear models with homo-
geneous (Fig. 2A) or heterogeneous (Fig. 2B) distri-
butions correspond to linear functions such that ap-
proximately (this will be defined more precisely in the
following sections) T proportion of the observations
are below and 1 — 1 proportion of the observations are
above the estimated lines. Our example, in which ef-
fects of the nonhabitat factors are unknown, results in
a heterogeneous distribution where slopes of the re-
gression quantiles increase with higher quantiles (Fig.
2B). The upper regression quantiles (1 > 0.90) of this
distribution have slope estimates close to the estimate
for change in biomass when habitat is the active con-
straint, i.e., as if accounting for the interaction of non-
habitat factors (compare Figs. 2A and B). Least squares
regression and linear correlation analyses focus on
changes through the center of the distribution (condi-
tional means), which underestimate rates of change
(slopes) due to the limiting relation of habitat (Fig. 2B).
1t is possible for change in the center of distributions
to be statistically indistinguishable from zero even
when estimated changes near the extremes of distri-
butions are nonzero. Concluding that there is no im-
portant limiting relation, based on the former evidence,
would be incorrect, given the latter evidence.

The statistical theory of regression quantiles has
been developed by econometricians during the last 20
years (Koenker and Bassett 1978, 1982, Bassett and
Koenker 1982, 1986, Buchinsky 1991, Koenker 1994),
but ecological applications have occurred only recently
(Koenker et al. 1994, Terrell et al. 1996). We describe
statistical properties of the regression quantile esti-
mates and methods to test hypotheses and construct
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F1G. 2. The same sample of biomass ( y) and habitat con-

ditions (X) as in Fig. 1, but the lines plotted are 95th, 90th,
75th, 50th, and 10th regression quantile estimates (A) for
biomass adjusted for nonhabitat factors (y + 4.02XZ) as a
function of habitat, and (B) for biomass as a function of
habitat. Slopes for regression quantiles in (A) range from
5,(0.75) = 3.99 t0 b,(0.10) = 4.04, and slopes for regression
quantiles in (B) range from 5,(0.10) = 0.60 to b(0.95) =
3.91.

confidence intervals that are applicable to estimating
effects of ecological limiting factors. We present sam-
ple applications to demonstrate strengths and weak-
nesses of various statistical methods for estimating lim-
iting relationships and to motivate other ecologists to
explore the analyses possible with regression quantiles.
Regression quantiles are a rapidly evolving method-
ology for linear (and nonlinear) models with an estab-
lished statistical theory; advances in describing and
testing models of limiting relationships should be pos-
sible by taking advantage of these procedures.
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REGRESSION QUANTILES
Properties of the estimates

The tth quantile (0 = v =< 1) of a random variable
Y is the inverse of the cumulative distribution function,
F-!(7), which is defined as the smallest real value y
such that the probability of obtaining smaller values of
Y is greater than or equal to 7. The one-sample quantile
definition is extended to the linear model y = XB +
v(X)e by defining the tth regression quantile as
Ov(t|X) = XB(1) and B(1) = B + v(-)F-'(1), where
y is an n X 1 vector of dependent responses, B is a p
X 1 vector of unknown regression parameters, X is an
n X p matrix of predictors (first column consists of
1’s), v(-) > O is some known function, and e is an n X
1 vector of random errors that are independent and
identically distributed (iid) (Koenker and Bassett 1978,
1982). It is important to note that the term v(X) allows
the errors to change as a function of X and, thus, var-
ious heteroscedastic (inid) and homogeneous (iid) error
models are accommodated with regression quantiles
(Koenker and Portnoy 1996). If errors are homoge-
neous, the tth regression quantile simplifies to
Oyv(t|X) = XB + F:!(1) and change in y across X is
constant for all values of T, but the intercepts (8,) in
B(7) will vary. Any difference in slope estimates for
different values of T is due to random sampling vari-
ation (Fig. 2A). If errors are heterogeneous with respect
to X, all parameters in B(r) may vary with 7 and re-
gression quantile estimates will reflect this pattern (Fig.
2B). In the context of estimating effects of ecological
limiting factors, our attention focuses on higher values
of 7, but lower values also may provide insight on
response patterns.

Estimates, b(t), of B(7) are obtained by minimizing
an asymmetric loss function of absolute values of re-
siduals where positive residuals are given weights
equal to T and negative residuals are given weight equal
to 1 — 7 (mathematical details are in the Appendix).
The term v(X) does not have to be estimated explicitly
because it is automatically incorporated in b(t). A Tth
regression quantile with p estimated parameters passes
through at least p sample observations (p residuals
equal zero). If we denote the number of positive, neg-
ative, and zero residuals by N*, N-, and N°, respec-
tively, and if N° = p, then the proportion of negative
residuals is approximately T, (N"/n < 7 =< [N~ + p)/
n) and the proportion of positive residuals is approx-
imately 1 — 1, (N*/n = 1 — 7 < [N* + p]/n). There
are at most nt sample observations below (N~ < nt <
N~ + N° and at most n(1 — 1) above (N* < nfl — 1]
= N* + NY a regression quantile estimate (Koenker
and Bassett 1978, Koenker and Portnoy 1996). It is in
this sense that the proportion of the sample observa-

tions less than an estimated regression quantile for.

specified 7 is only approximately equal to 7. Regression
quantiles define an ascending sequence of planes that
are above an increasing proportion of observations with
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increasing values of T (Fig. 2). We will use the notation
for a 1007th (e.g., 50th) rather than for the tth (0.50th)
regression quantile in the text when convenient, which
is equivalent to using percentages rather than propor-
tions.

Unlike one-sample quantiles where there are at most
n distinct values of T equally spaced on the interval [0,
1], in the regression quantile setting, there may be more
than »n distinct values of 7 that are unequally spaced.
In practice, there are usually <3n distinct regression
quantile solutions (Koenker and d’Orey 1987, Portnoy
1991). For example, there are 119 distinct regression
quantile solutions for the simple linear model and data
(n = 100) in Fig. 2B that break the interval [0, 1] for
T into 118 unequal intervals; intercept and slopes es-
timates, bo(0.947, 0.954) = 0.38 and 5,(0.947, 0.954)
= 3.91, are solutions for the interval T = (0.947, 0.954).
Our focus here is on estimating selected values of T
(e.g., 0.50, 0.75, 0.95) rather than solving for all pos-
sible values, but any selected value of T will be asso-
ciated with one of the interval solutions.

Regression quantiles have several important linear
model properties that are common to least squares re-
gression estimates of expected values; they are equi-
variant to (1) scale changes, (2) location shift, and (3)
design (X) reparameterization (Koenker and Bassett
1978, Buchinsky 1991, Koenker and Portnoy 1996).
Unlike least squares estimates of means, regression
quantiles also are (4) equivariant to monotonic trans-
formations, linear or nonlinear (Buchinsky 1991,
Koenker and Portnoy 1996). The tth quantile of the
transformed data is the transformation of the Tth quan-
tile of the original data, i.e., if A(:) is a nondecreasing
function, then for any random variable ¥, Q, (1) =
h(Qy(1)). Thus, there is no ambiguity about what is
being estimated in the transformed and original (back-
transformed) data scales, as there is when estimating
means with least squares regression for nonlinear (e.g.,
logarithmic) monotonic transformations (Bassett 1992,
Koenker and Portnoy 1996). The method of Box-Cox
transformations can be applied to discover the most
suitable transformation to achieve linearity without be-
ing concerned about normality or homogeneity of the
error distribution (Buchinsky 1995, Koenker and Port-
noy 1996).

Regression quantile estimates are insensitive to ex-
treme values of outlying dependent variables. As long
as a dependent variable value remains above or below
a regression quantile estimate, the estimate will remain
unchanged, regardless of the magnitude of the value
(Koenker and Portnoy 1996). Including a few extreme
observations in an analysis with regression quantiles
has less effect on the estimates than it does when using
least squares regression, which is notoriously sensitive
to even a single outlier (Cade and Richards 1996).

Confidence intervals and hypothesis tests

A measure of precision for any statistical estimate
of a parameter is desirable to determine values con-
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sistent with a selected model and data. Asymptotic
sampling theory for regression quantiles implies that
the sampling distribution for a specified quantile (1) is
dependent on the density of errors at the estimate
(Koenker 1994). For typical unimodal iid errors with
greatest density near the center (e.g., normal, lognor-
mal, double exponential), sampling variation of re-
gression quantiles increases for quantiles greater or less
than the 50th. For multimodal error distributions where
greatest densities are not near the center of the error
distribution, it is possible for the sampling distribution
of regression quantiles greater or less than the 50th
(e.g., 25th and 75th) to have less sampling variation.

Several methods for testing hypotheses and con-
structing confidence intervals (c1) have been developed
for regression quantiles when the error distributions are
assumed to be homogeneous (Koenker and Bassett
1978, Koenker 1994, Cade and Richards 1996, Zhou
and Portnoy 1996). However, for estimating effects of
ecological limiting factors, we are interested in hy-
pothesis-testing procedures that are valid when it is
unreasonable to assume the homogeneity model.
Koenker (1994) proposed both an xy-pairs bootstrap
procedure and a quantile rank-score test that provided
correct test levels under the null hypothesis for het-
eroscedastic regression models. We used the rank-score
test because it is easily inverted to provide confidence
intervals when the test statistic is evaluated with ref-
erence to a standard normal distribution (an asymptotic
approximation). We used a regression quantile rank-
score test procedure based on an adaptation of an al-
gorithm described by Koenker and d’Orey (1994) and
implemented in S-Plus to test hypotheses and compute
confidence intervals (Appendix). The quantile rank-
score test is a special case of the more general rank-
score tests for regression quantiles developed by Gu-
tenbrunner and JureSkovi (1992), Gutenbrunner et al.
(1993), and Hugkova (1994). The quantile rank-score
test can be thought of as an extension of the sign test
to quantiles other than the 50th (median) and to the
linear model. ,

When using regression quantiles to estimate changes
in the upper edge of distributions associated with lim-
iting factors, it is tempting to consider the maximum
(t = 1.0) as the best possible estimate for the limiting
relation. However, the asymptotic variance of the rank-
score statistic is zero for T = 1.0 because the term 7(1
— 1), which appears in the variance formula, would
equal zero (Appendix). We used values of 7 less than
1 so that we could estimate precision by calculating a
confidence interval. The maximum value of T that can
be estimated precisely and still characterize changes in
the upper quantiles of heteroscedastic distributions as-
sociated with modeling limiting factors will vary de-
pending on sample size and distribution of the data.

The need to evaluate several upper quantiles is dem-
onstrated with the simulated data in Fig. 2B. The slope
estimate for r = 1.0 s b,(1.0) = 3.89, but no confidence
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interval can be calculated, whereas the slope estimate
for T = 0.95 is »,(0.95) = 3.91 and has a 99% confi-
dence interval of 3.52-4.03. The slope estimate for 7
= 0.97, b,(0.97) = 3.90, has a 99% confidence interval
of —7.16 to 4.01, an estimate similar to 7 = 0.95 (and
1.0), but with greater sampling variation because of
lower density of observations. The slope estimate for
7 = 0.90, »,(0.90) = 3.53, has a 99% confidence in-
terval of 2.29-4.11, a slightly lower estimated change
with larger sampling variation. The 95th regression
quantile provides the largest estimate of §,(t) with con-
fidence intervals that exclude zero for this sample size
(n = 100) and simulated data distribution, where 5%
of the population is unaffected by interactions with
nonhabitat factors. Sampling from a population where
a greater proportion of observations of species biomass
is unaffected by nonhabitat factors, e.g., 20%, would
produce a greater range of upper regression quantiles
(e.g., T > 0.80) with similar slope estimates, and the
less extreme of these quantiles (e.g., 0.90 > 1 > 0.80)
would have less sampling variation and, hence, smaller
confidence intervals.

EXAMPLE APPLICATIONS
Acorn abundance and oak forest characteristics

Acorn production in oak (Quercus spp.) forest types
is important for wildlife species that depend on mast
forage. Schroeder and Vangilder (1997) measured
acorn density (average annual numbers per hectare),
acorn biomass (average annual kilograms per hectare),
oak tree cover, and number of oak species in 43 0.2-ha
plots from 1989 to 1993 in Missouri to test mast pro-
duction relationships in wildlife habitat models. They
derived an acorn production suitability index (0-1)
from estimates of canopy cover of oaks =25 cm dbh
(cc-oaks) and number of oak species (spp-oaks). This
index was the arithmetic average of two functions: a
piecewise linear function of oak canopy cover (cc-oaks/
40 if cc-oaks = 40, 1 if 40 < cc-oaks = 60, or 1 —
[cc-oaks — 601/100 if cc-oaks > 60) and a discrete
function for the number of oak species (1 if spp-oaks
= 3, 0.5 if spp-oaks = 2, and 0.1 if spp-oaks = 1).
Maximum suitability for acorn production occurred
when canopy cover of oaks =25 cm dbh was 40-60%
and there were =3 oak species. The index served as
an independent variable on which acorn density and
acorn biomass were regressed with least squares re-
gression. Schroeder and Vangilder (1997) noted that
the “wedge-shaped’” distribution of acorn density and
biomass plotted against the acorn suitability index was
consistent with the hypothesis that oak cover and spe-
cies richness act as limiting factors for acorn produc-
tion.

We analyzed the relationship between average annual
acorn biomass and the acorn suitability index (Schroe-
der and Vangilder 1997) with simple regression models,
y = B, + x,8, + v(x,)e, where y was acorn biomass,
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Fi1G. 3. Average annual biomass of acorns and acorn suit-
ability indices based on oak forest characteristics for n = 43
0.2-ha sample plots in Missouri (data from Schroeder and
Vangilder [1997]). Solid lines correspond to the seven se-
lected 1007th regression quantile estimates in Table 1, and
the dashed line is the OLS regression estimate of the mean.

and x; was the acorn suitability index, based on canopy
cover and number of oak species. Estimates and 90%
confidence intervals were made for 95th, 90th, 75th,
50th, 25th, 10th, and 5th regression quantiles. We also
examined all regression quantiles =80th for similarity
of slope estimates (parallelism), length of 90% confi-
dence intervals, and whether confidence intervals ex-
cluded zero. Acorn density and biomass were strongly
correlated (r = 0.92), and either was a reasonable es-
timate of average annual acorn production.

Average annual acorn biomass increased with in-
creasing acorn suitability indices and increases by
were greater for higher quantiles (Fig. 3). Similar pat-
terns were found for acorn density (Schroeder and Van-
gilder 1997), but we limit our example to biomass.
Confidence intervals for B, calculated with the rank-
score tests exclude zero, except for the 95th regression
quantile estimate (Table 1). Confidence intervals in-
crease for quantiles farther from the 50th, demonstrat-
ing that more extreme regression quantiles (e.g., 5th
and 95th) were estimated less precisely than more cen-
tral quantiles (e.g., 50th). The 90th regression quantile
of acorn biomass was the most extreme quantile that
could be estimated with any reasonable precision, as
indicated by 90% confidence intervals. The estimated
slope for the maximum, 5,(0.98, 1.00) = 297.1 kg/ha
per unit change in suitability, was far greater than
slopes for other upper quantile estimates (0.75 < 7 <
0.95), which were in the range 90.1 to 125.2 kg/ha.
This extreme estimate fits through the outlying obser-
vation of 202.8 kg/ha. If this observation is deleted,
our original slope estimate for the 90th regression
quantile, b,(0.89, 0.92) = 102.3, becomes the estimate
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TABLE 1. Estimates of 8¢ and B, 90% confidence intervals
for B, and P for Hy: B, = O from rank-score tests for seven
selected regression quantiles (100tth) for models Yy =B
+ xBy + v(x))e, where y is acorn biomass (kg/ha), and x,
is the acorn suitability index based on canopy cover.

T by b, 90% c1 for B, P

Sth -1.0 237 12.5-266.6 0.066
10th 2.4 21.8 18.6-142.5 0.012
25th —4.2 47.4 38.4-81.7 0.001
50th —4.3 80.5 69.9-97.1 0.022
75th -6.3 97.7 29.0-111.5 0.004
90th 14.4 102.3 24.2-145.7 0.040
95th 5.9 125.2 —445.3-166.2 0.203

for the 92-94th regression quantile, b,(0.92, 0.94) =
102.3, and the 90% confidence interval narrows to 44.3
to 142.3,

The 90th regression quantile, b,(0.89, 0.92) =102.3
kg/ha change in acorn biomass per unit change in the
acorn suitability index, is our best approximation of
changes in average annual acorn production when for-
est suitability is the active limiting factor. Changes as
great as 145.7 kg/ha are consistent with the model and
data, as indicated by the upper endpoint of the 90% cI
(Table 1). The least squares regression estimate of the
slope for. the same model (Schroeder and Vangilder
1997), b, = 77.6 (90% c1 = 40.0-115.1) was similar
to the estimate for the 50th regression quantile (Table
1), but had a longer confidence interval. Neither the
50th regression quantile estimate of the conditional me-
dian nor the least squares regression estimate of the
conditional mean (and associated 90% cis) suggested
increases in acorn biomass due to increases in forest
suitability as high as those indicated by the 90th re-
gression quantile. Larger sample sizes will be required
to determine whether greater slopes of more extreme
regression quantiles, >90th, are better approximations
of changes in annual acorn production when forest suit-
ability is the active limiting factor. The lower endpoint
of 90% confidence intervals for the 10th regression
quantile indicates that changes as low as 18.6 kg/ha
per unit change in forest suitability may occur when
factors unrelated to oak forest attributes are limiting.

Annual acorn production varies due to many factors
other than oak forest characteristics, especially weather
(Christisen and Kearby 1984). Weather explained 55%
and 89% of the variance in acorn production in black
oak (Q. velutina) and red oak (Q. rubra), respectively,
over an 8-yr period in east-central Missouri (Sork et
al. 1993). Thus, low levels of acorn production at high
levels of the acorn suitability index (Schroeder and
Vangilder 1997) were consistent with the index being
a reasonable quantification of oak forest attributes that
limit acorn production, given that other factors (e.g.,
weather) often were the active limiting constraint. The
ecological basis for this relationship is readily under-
stood, because weather can limit acorn production to
levels less than those imposed by the number, size, and
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species of oaks. High levels of acorn production in
forest stands with low acorn suitability indices would
have refuted the hypothesized limiting relationship
with oak forest suitability. The 90th regression quantile
is a more reasonable approximation of the expected
increase in acorn production, when oak forest suit-
ability is the active constraint, than is the lower increase
in production estimated with the mean of the distri-
bution.

Glacier lilies, gophers, and rocks

Thomson et al. (1996) counted glacier lily (Erythro-
nium grandiflorum) seedlings and flowering plants,
computed an index for abundance of surface and sub-
surface rocks, and computed an index of pocket gopher
(Thomomys talpoides fossor) burrowing activity in a
square grid of 256 2 X 2 m quadrats in a subalpine
meadow in western Colorado. Figures 5-7 in Thomson
et al. (1996) suggest a negative limiting relation be-
tween flower counts and seedling numbers, in the sense
that seedlings were numerous only when flowers were
scarce. We reanalyzed the flowering and seedling lily
data using regression quantiles, considering several al-
ternative model forms. Thomson et al. (1996) deleted
one outlier from their analyses. We included the outlier
in our analyses, because most regression quantile es-
timates were insensitive to the presence of this outlier.
We left the outlier off our scatter plots to facilitate
visual comparison with graphs of Thomson et al
(1996).

We considered simple linear regression models, y =
B, + X,B, + v(x,)e, where y was number of seedlings
and x, was number of lily flowers; a log,, transfor-
mation of y + 1; and a piecewise linear regression
model (Neter et al. 1996:474-478) with an indicator
variable, x, = 0 for x, = 16 and x, = 1 for x; > 16,
added to the model. The value of 16 flowers for the
breakpoint in the piecewise linear regression was ob-
tained by inspecting the data distribution, but a more
refined g"stimate could be obtained by iterative proce-
dures. These models were based on the discussion of
the data pattern in Thomson et al. (1996); i.e., maxi-
mum seedling numbers occurred at intermediate num-
bers of flowers, and the decrease in seedling numbers
might be nonlinear. We also estimated a multiple re-
gression model with the index of rockiness added to
the model, y = B, + x,8, + X8, + v(X)e, where y
and x, were as previously defined, and x, was the index
of rockiness. Estimates and 90% confidence intervals
were obtained for 5th, 10th, 25th, 50th, 75th, 90th, and
95th regression quantiles for the models. Again, we
also examined estimates and 90% confidence intervals
for all regression quantiles =80th.

Regression quantile estimates for glacier lily seed-
lings as a linear function of flower numbers (Fig. 4A)
provided a pattern of lines similar to the partitioned
least squares regression estimates in Thomson et al.
(1996:Fig. 6). The 95th regression quantile estimate
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FIG. 4. Glacier lily seedling counts and fiower numbers
for n = 256 contiguous 2 X 2 m quadrats in subalpine meadow
of western Colorado (data from Thomson et al. [1996]). Lines
correspond to seven selected 1007th regression quantile es-
timates in Table 2, (A) with zero counts included and (B)
without zero counts. Dashed lines in (B) are for models based
on log,o(seedling counts + 1). One outlying count of 72 seed-
lings at 16 flowers is not plotted but was used to estimate
regression quantiles.

provided the strongest negative linear relationship be-
tween lily seedling and flower numbers, with a 90% c1
that (barely) excluded zero (Table 2). Higher quantiles
(0.95 < v < 0.99) had slopes ranging from —0.10 to
—~0.23 that were consistent with the data pattern, but
could not be estimated very precisely (90% confidence
intervals overlapped zero to a considerable degree).
The maximum regression quantile had slope b, (0.996,
1.000) = —0.53, but was driven by the outlying value
of 72 seeds at 16 flowers and not consistent with the
majority of the data. Piecewise linear regression models
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TABLE 2. Estimates of B, and $8,, 90% confidence intervals
for B, and P for H,: 8, = O from rank-score tests for seven
selected regression quantiles (100tth) for models y = B,
+ x,8, + v(x,)e, where y represents glacier lily seedling
numbers and x, represents flower numbers. Models were
estimated with (n = 256) and without (n = 129) the zero
seedling counts.

T by b, 90% c1 for B, P
With zero seedling counts
5th 0.00 0.000
10th 0.00 0.000
25th 0.00 0.000
50th -0.20 0.029 0.002-0.045 <0.001
75th 6.00 0.000 —0.012-0.070 0.347
90th 11.87 —0.016 —0.064-0.137 0.403
95th 18.58 —0.073 —0.092--0.003 0.123
Without zero seedling counts
5th 1.00 0.000
10th 1.00 0.000
25th 3.29 -0.022 —-0.043-0.017 0.530
50th 6.57 —0.020 ~0.064——0.003 0.186
75th 11.89  -0.042 —0.096-—-0.014 0.026
90th 19.13  ~0.094 —0.164-—0.022 0.032
95th 28.94  —0.160 0.145

—0.172-0.005

and nonlinear models obtained by log,, transformation
of seedling counts were consistent with the data pattern,
but wider confidence intervals and larger P values from
hypothesis tests indicated that these models were not
better alternatives to the simple linear model. We were
unable to develop useful confidence intervals from the
rank-score test for 5th to 25th regression quantiles be-
cause the mass of zeros associated with those estimates
violated the positive density assumption of the rank-
score test. The first nonzero slope was for the 38th
regression quantile. Negative slopes for upper regres-
sion quantiles were consistent with the explanation pro-
vided by Thomson et al. (1996) that sites where flowers
were most numerous, because of lack of pocket gophers
(which eat lilies), were rocky sites that provided poor
moisture conditions for seed germination; hence, seed-
ling numbers were lower.

The influence of the mass of zero seedling counts
(49% of observations) was investigated by estimating
regression quantiles for the linear model after truncat-
ing zero counts. Differences in estimates and confi-
dence intervals between models with and without zero
counts indicated that inclusion of the zeros attenuated
the negative slopes for higher regression quantiles, but
precision of the estimates was not reduced because con-
fidence intervals were wider for the truncated model
(Table 2, Fig. 4B). However, 90% confidence intervals
shifted to more negative values when the zeros were
truncated. Without the zero counts, 50th, 75th, and 90th
regression quantile estimates had greater negative slope
estimates and 90% confidence intervals that excluded
zero. The nonlinear functions from back-transforming
the estimates made with the log,, transformation also
were consistent with the data when the zeros were elim-
inated, 90% confidence intervals did not overlap zero,
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and P values that slopes equal zero were similar to
those for the linear model estimates. There was only a
minor improvement in fit for the nonlinear compared
to the linear model for the 95th regression quantile (Fig.
4B). Censored regression quantile models (Powell
1986, Buchinsky 1991) are alternative procedures for
data with a mass of values at zero, but this will not be
explored here.

The interaction between rocks, gophers, and lilies
discussed by Thomson et al. (1996) suggested that a
multiple regression including number of rocks as an
additional independent variable might be informative.
Regression quantiles estimated for a model that in-
cluded rockiness and flower numbers yielded slope es-
timates for flowers that were positive, rather than neg-
ative as in the simple linear model (Table 3, Fig. 5).
After accounting for the positive effect of flower num-
bers on seedling numbers, rockiness had a negative
effect on lily seedling numbers. Confidence intervals
for all but one coefficient estimate (90th quantile es-
timate for flowers) did not overlap zero (Table 3).
Again, it was not possible to estimate confidence in-
tervals for 5-25th regression quantiles because of the
mass of zeros. The positive relation between seedling
numbers and flower numbers, after accounting for the
negative relation with rockiness, was consistent with
the path analysis of Thomson et al. (1996). Greater
numbers of flowers provided a greater potential source
of seeds and, thus, seedlings, but increasing rockiness
decreased moisture availability, which reduced seed
germination and, thus, seedling numbers (Thomson et
al. 1996). Rockiness had an indirect positive effect on
seedling numbers through its positive relation with
flower numbers. We considered models that included
an interaction between rockiness and flower numbers
and that included the gopher activity index, but neither
of these terms differed from zero (P > 0.10) for re-
gression quantiles >50th, given that flower numbers
and rockiness were already in the model.

Spread in the distribution of the upper 50% of seed-
ling numbers (the nonzero counts) changed twice as
much across changes in rockiness at a given level of
flower numbers as across changes in flower numbers
at a given level of rockiness (Table 3, Fig. 5). Most of
the increasing variation in the distribution of seedling
numbers as a function of increasing flower numbers (at
a given level of rockiness) occurred between the 50th
and 75th quantiles, as indicated by a near doubling in
estimates from 4,(0.50) = 0.04 to 5,(0.75) = 0.09, but
little difference between estimates from the 75th to
95th regression quantiles. Decreasing variation in the
distribution of seedling numbers as a function of in-
creasing rockiness at a given level of flowers occurred
for all quantiles >50th, as indicated by progressively
more negative estimates from 5,(0.50) = —0.005 to
b,(0.95) = —0.09. Limiting factors not included in the
model influenced variation in lily seedling numbers
more across levels of rockiness than across flower num-
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Estimates of By, B,, and B,, 90% confidence intervals for 8, and B,, and P for Hy: B, = B, = O from rank-score

tests for seven selected regression quantiles (1007th) for models y = B, + x,B, + x,B, + v(x; + X,)e, where y is glacier
lily seedling numbers, x, is flower numbers, and X, is rockiness (n = 256).

T by b, 90% cI for B, b, 90% c1 for B, P
Sth 0.00 0.000 0.000

10th 0.00 0.000 0.000

25th 0.00 0.000 0.000

50th -0.18 0.044 0.020-0.062 ~0.005 ~0.011-~0.001 0.001

75th 4.78 0.092 0.050-0.125 -0.039 —0.045-—0.030 0.001

90th 12.09 0.088 —0.023-0.181 -0.058 ~0.077--0.014 0.023

95th 20.30 0.085 0.049-0.147 ~0.090 -0.112--0.038 0.030

bers. The near parallelism of slope estimates for
changes in seedling numbers with changes in flower
numbers for quantiles >75th suggests that other lim-
iting factors not included in the model interact more
with rockiness to affect seedling numbers.

The 95th regression quantile is our best estimate of
the changes in lily seedling numbers that would occur
when flower numbers and rockiness are the active lim-
iting factors (Table 3). Regression quantiles for v >
0.95 had slope estimates of slightly greater magnitude,
but confidence intervals for B, included zero, although
estimates for B, still differed from zero (e.g., b,(0.97)
= 0.11, 90% c1 = —0.002-0.353; 5,(0.97) = —-0.11,
90% c1 = ~0.127-—0.046). Upper endpoints of 90%
confidence intervals for estimates of the 95th regres-
sion quantile indicated that increases in seedling num-
bers as great as 0.15 per flower and decreases as great
as 0.11 per unit of rockiness were consistent with the
data and the linear model. For purposes of comparison,
the mean function was estimated for this same model
by using a generalized linear model assuming a neg-

40

w
(=]

Number of Seedlings

FI1G. 5. Glacier lily seedling counts, lily flower numbers,
and rockiness index for n = 256 contiguous 2 X 2 m quadrats
in subalpine meadow of western Colorado (data from Thom-
son et al. [1996]). Surfaces correspond to seven selected
1007th regression quantile estimates in Table 3. One outlying
count of 72 seedlings at 16 flowers was not plotted but was
used to estimate regression quantiles.

ative binomial distribution, which is appropriate for
count data with a large proportion of zeros (Venables
and Ripley 1994, White and Bennetts 1996). Estimates
were b, = 0.05 (90% c1 = 0.024-0.078) and b, =
—0.02 (90% c1 = —0.031-—0.016), estimate of dis-
persion parameter 6 = 1.02 * (0.10, mean * 1 SE),
and a residual deviance of 256.8 on 253 df indicated
a good fit to the negative binomial distribution (P =
0.422). These estimated changes in the mean are con-
siderably lower than those for the 95th regression quan-
tile, especially for the effect of rockiness.

DiscussioN

An upper regression quantile may not describe the
“correct” limiting function in all situations, but should
provide an approximation that is more consistent with
the ecological theory of limiting factors than estimates
through the center of data distributions. Selecting ap-
propriate upper quantiles to estimate changes in a bi-
ological response requires consideration of the statis-
tical properties of the estimates and the underlying eco-
logical processes. Our examples and simulations sug-
gest that, when a larger proportion of a sample is not
impacted by interactions with unmeasured factors, then
more of the upper quantiles should be parallel. Esti-
mating slopes for the less extreme of these quantiles
may provide more precise estimates of change due to
limiting factors. If unmeasured factors have additive,
rather than interactive, effects with the measured fac-
tors, then variation in the response should be homo-
geneous, all regression quantiles (and OLS regression)
should estimate the same slope parameters, and those
estimated more precisely should be preferred estimates
of rate of change in the biological response to a limiting
factor. Confidence intervals calculated by inverting the
rank-score test are sensitive to local density of obser-
vations around the estimated quantile, such that a quan-
tile slightly less or greater than one initially selected
may be estimated with greater or lesser precision de-
pending on the data. Looking at the pattern of estimates
and associated confidence intervals for a range of upper
regression quantiles is recommended for heteroscedas-
tic distributions. When it is desirable to estimate a re-
gression quantile very close to the maximum (e.g., the
99th), large samples are required to have sufficient den-
sity of observations near the estimate to make it precise.
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Regression quantile estimates must fit through sam-
ple data points. Therefore, estimates for upper quantiles
will be consistent with changes expected when the mea-
sured factor is the active limiting constraint only if
samples are taken across temporal and spatial scales
large enough to include some sample units where the
measured factor is the active constraint, or is minimally
impacted by factors not measured. When this is an
unreasonable assumption, the distributional approach
of Kaiser et al. (1994) could be used to provide esti-
mates of limiting relations that occur beyond the range
of the sample data. Substantive subject matter theory
about the data generation process then must be relied
upon to justify distributional assumptions used to de-
rive the estimates (e.g., Kaiser et al. 1994: Figs. 2 and
4), because, inherently, there is no good data-dependent
statistical procedure to assess model fit.

Regression quantiles are appropriate for modeling
limiting relationships when one variable is clearly the
dependent variable (e.g., acorn biomass) and the others
are clearly independent variables (e.g., oak forest char-
acteristics), or when, for the sake of a well-developed
statistical methodology, the analyst is willing to treat
one variable as dependent. Some estimation and hy-
pothesis-testing procedures for regression quantiles
may be unfamiliar, but many procedures, such as data
transformations to achieve linearity, variable selection,
use of indicator variables for categorical variables, and
interpretation of parameter estimates, are straightfor-
ward extensions of familiar linear modeling theory for
least squares regression. Regression quantiles fit
smooth functions to data without requiring the subjec-
tive groupings to calculate summary values (e.g., the
maximum) associated with methods used by Johnson
et al. (1989), Blackburn et al. (1992), Griffiths (1992),
and Thomson et al. (1996). Regression quantiles readi-
ly accommodate multiple predictor variables, some-
thing that is more problematic for methods that require
binning data into groups. Methods also have been pro-
posed to define functions near the extremes of data
distributions based on percentiles of a standard normal
"distribution for estimating endpoints of a prediction
interval in a least squares linear regression model (Bi-
len 1996, Hubert et al. 1996). These methods are sim-
ilar to regression quantiles in spirit, but have an as-
sumption of normally distributed errors that is much
stronger and more restrictive than when estimating con-
fidence intervals for the conditional mean in least
squares regression.

Our applications of regression quantiles stressed es-
timating changes (slopes) in the upper quantiles of dis-
tributions as a function of limiting factors. The rank-
score test employing the normality of rank-score sta-
tistics provides a method with asymptotic validity for
testing hypotheses and constructing confidence inter-
vals for slope parameters. However, more reliable prob-
abilities and confidence interval coverage for small
samples and more extreme quantiles might be possible
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by evaluating the permutation distribution of the rank-
score statistic under the null hypothesis. Rank-score
tests can be considered a special case of the distance
functions in multiresponse permutation procedures
(Mielke and Berry 1983, Zimmerman et al. 1985, Tracy
and Tajuddin 1986). The rank-score test does not nec-
essarily provide useful intervals for ¥ at specified X,
including the intercept (X = 0). Mathematically, it is
possible to compute confidence intervals for the inter-
cept with the rank-score test, but current theory does
not address testing the intercept (Gutenbrunner et al.
1993). Estimating confidence intervals or confidence
bands may be important in some ecological applica-
tions when predicted values for limiting relations are
desired. Recently, Zhou and Portnoy (1998) extended
the direct-order statistic estimates of Zhou and Portnoy
(1996) to heteroscedastic regression quantile models
for constructing confidence and prediction intervals for
yat X = x.

Several recently developed procedures might prove
useful in more comprehensive applications of regres-
sion quantiles for estimating effects of limiting factors.
He (1997) presents a restricted regression quantile es-
timation approach for location-scale heteroscedastic
models that limits the number of unique solutions to
at most n, and prevents crossing of estimated quantiles
within the domain of X. Nonlinear functions can be
estimated with nonparametric smoothing splines
(Koenker et al. 1994) and parametric models (Welsh
et al. 1994, Koenker and Park 1996). Schwarz (Koenker
et al. 1994) or Akaike information criterion (Hurvich
and Tsai 1990) can be used with regression quantiles
to aid in model selection, similar to applications with
other regression estimators. All distinct regression
quantile solutions could be used to more completely
quantify the structure in data distributions (Bassett and
Koenker 1982, Gutenbrunner et al. 1993, Koenker
1994, Koenker and d’Orey 1994).

Regression quantiles are an addition to- a small set
of statistical procedures (Maller 1990, Kaiser et al.
1994, Thomson et al. 1996) that have been developed
to estimate effects of limiting factors when it is known
a priori that only a subset of those factors was measured
and included in a modeled relationship. These proce-
dures estimate parameters describing changes near the
extremes of biological response distributions, which
are inherently less precise than estimates of central
tendency, regardless of the method employed. The un-
desirable, low precision of estimates near extremes of
distributions is offset by the greater magnitude of es-
timated effects and increased relevance to ecological
limiting factors. The other obvious statistical solutions
of measuring all relevant factors in observational stud-
ies, or randomizing factors of interest in an experi-
mental design, simply are not possible in many eco-
logical investigations. We believe that expanding data
analysis to include estimation of changes in multiple
quantiles of response distributions in order to examine
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effects of limiting factors will aid development of eco-
logical theory and its application to important resource
management issues.
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APPENDIX

Regression quantile estimation.—The right-continuous dis-
tribution function for any real-valued random variable Y is
F(y) = P(Y < y) and the tth population quantile of ¥ (0 <
T < 1) is F7!(7) = inf{y: F(y) = 1}. The 7th population
quantile of y conditional on X in the linear model y = XpB
+ v(X)e is defined as Qy(t|X) = XB(r) and B(t) = B +
v(-)F;'(t), where y is an n X 1 vector of dependent responses,
B is a p X 1 vector of unknown regression parameters, X is
an n X p matrix of predictors, v(-) > 0 is some known func-
tion, and e is an n X 1 vector of random errors that are iid
as F. We assume that the first column of X consists of 1’s
(an intercept). If heteroscedastic errors occur as a linear func-
tion through the predictors, v(X) = (diag(X+y)), where v is a
p X 1 vector of unknown scale parameters, then we have the
familiar location-scale model of heteroscedasticity and
Oy(t | X) = XB(r) and B(r) = B + vF,'(7) (Koenker and
Bassett 1982, Buchinsky 1991, Gutenbrunner and Jure¢kovd
1992). Homoscedastic regression models are a special case
when vy = (1, 0, ..., 0) and Qy(t | X) = XB(1), B(1) = B
+ (F7'(1), 0, ..., 0), because all parameters other than the
intercept (B,) in B(1) are the same for all 7. Other forms of
heteroscedasticity that are not simple location-scale forms are
possible (Koenker and Portnoy 1996). If X is a single column
of 1’s, then Qy(7 | X) = F~'(r), i.e, the usual one-sample Tth
quantile. If X is a sequence of 0, 1 indicator variables denoting
categorical group membership, then Qy(t | X) = XB(1), B(1)
= B + F;'(v) provides the location of the rth quantile for
one group (B,) and differences between the corresponding Tth
quantiles of the other groups (B,, p = 1).

The assumption imposed on F, to estimate regression quan-
tiles is that a Tth quantile of y — XpB(1) conditional on X
equals 0, F;'(1 | X) = 0. Estimates, b(1), of B(7) are solutions
to the following minimization probiem:

n 14

min 2 p,<y,. - 20 b,.x,,) (A1)
i= i=

where p(¢) = e(t — I(e < 0)), and I() is the indicator func-
tion. The estimating equations in A.l are solved by a mod-
ification of the Barrodale and Roberts (1974) simplex linear
program for any specified value of T (Koenker and d’Orey
1987). With little additional computation, the entire regres-
sion quantile function for all distinct values of T can be es-
timated (Koenker and d’Orey 1987, 1994). By expanding
estimating function (A.1) to

,
min 2 Ty — Z bjxij
ie (il yi=byx;;) =0
,
+ 2 -9y - b, (A2)
e ilyi<bjuy) =0

it can be seen that positive and negative residuals are differ-
entially weighted for regression quantiles other than v = 0.5.

Rank-score hypothesis tests.—The essence of the T-quantile
rank-score procedure (Koenker 1994) is that rank scores are
calculated based on the n X 1 vector of dual linear program-
ming solutions, a(t) = [0, 1]7, from estimating the reduced
parameter model y — x6(7) = X,B,(1) + v(X)e, where y,
v(°), and e are as previously defined, B,(t)isa (p — 1) X 1
vector of unknown nuisance regression parameters, X, is an
n X (p — 1) matrix of predictors, x, is an n X 1 vector of
predictors, and B,(7) is the scalar parameter specified by the
null hypothesis Hy: B,(t) = &(7) (frequently &(t) = 0) for the
full parameter model y = X,8,(7) + x,8,(1) + v(X)e. The n
X 1 vector of rank scores s(t) = a(r) — (I — 1) is used in
the test statistic S(7) = n~%5 x)s(7), which is asymptotically
normally distributed with p. = 0 and ¢? = 7(1 ~ 7)g% where
g = n~ %I — X (X{X,)"'X})x,. The standardized test sta-
tistic 7(t) = S(t)[r(1 - 7)g*] -3 is referenced to the standard
normal distribution to calculate probabilities under the null
hypothesis.

The elements of a(r) are 1 when the residuals for the re-
duced model are positive, 0 when the residuals are negative,
and in the interval (0, 1) when the residuals are O (i.e., the
points fit exactly by the tth regression quantile). Rank scores
s(1) are, thus, 7 for positive residuals, 1 — 1 for negative
residuals, and in the interval (1 = 1, 1) when residuals are
0. Validity of the rank-score test requires an assumption of
positive density for y at the estimate, f(F~!(1)) > 0.

Confidence intervals calculated by inverting this test sta-
tistic are centered on the estimate, because S(t) = 0 for H,:
Bx(7) = &(1) = by(7), but are not necessarily symmetric
(Koenker 1994). By alternating which independent variables
are being tested by the null hypothesis and which are con-
sidered nuisance parameters, one can obtain confidence in-
tervals for each independent variable conditioned on the oth-
ers being in the model. Because the sampling distribution of
the rank-score test statistic is discontinuous, we followed
Koenker (1994) and interpolated between adjacent hypoth-
esized values of B,(t) = &(t) for constructing confidence in-
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tervals. Although we emphasize testing a single parameter code to implement regression quantiles and the rank-score

because of its connection to constructing confidence intervals, tests in S-Plus are available in ESA’s Electronic Data Archive:

it is possible to simultaneously test multiple parameters with the Ecological Archives E080-001. The BLOSSOM software

quantile rank-score test and to use a ¥ distribution with pdegrees  available at the web site of the Midcontinent Ecological Sci-

of freedom (where p is number of parameters tested) to ap- ence Center estimates regression quantiles, but uses a per-

proximate the P value (Gutenbrunner et al. 1993, Koenker 1994).  mutation procedure (Cade and Richards 1996) to test hy-
Source of computer programs.—Script files and Fortran  potheses.
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